s'authentifier
version française rss feed
HAL : tel-00551266, version 1

Fiche détaillée  Récupérer au format
Université Paris-Est (20/05/2009), Ahmed Mebarki (Dir.)
Fiabilité des installations industrielles sous impact de fragments de structures - Effet domino
Quoc Bao Nguyen 1
(20/05/2009)

La plupart des sites industriels abritent des équipements et des réservoirs sous pression. Pour des raisons diverses (suppression, impact mécanique, surchauffe ou autre), ils peuvent être endommagés et même éclater. Cette explosion peut engendrer de nombreux projectiles. Au cours de leur vol, ces derniers peuvent impacter d'autres équipements, tels que des réservoirs sous pression ou d'autres installations sensibles (poste de commande, par exemple). Si une des cibles impactées subit une ruine mécanique, elle peut exploser et générer une nouvelle série de projectiles. Ces projectiles menacent, à leur tour, d'autres installations et ainsi de suite. Ce type d'enchaînement accidentel catastrophique est connu sous le nom d'effet domino ou de suraccident. Dans ce document, l'effet domino pouvant se produire sur des sites industriels est analysé au travers des projections produites par l'accident initial. Une approche probabiliste globale est ainsi développée dans laquelle le calcul de la probabilité d'occurrence du phénomène requiert le passage par quatre étapes : - Analyse des termes sources : les projectiles générés par l'explosion d'un réservoir ont différentes caractéristiques, à savoir le nombre de projectiles, la forme, la masse, la vitesse de départ et les angles de départ. Toutes ces grandeurs sont modélisées par des variables aléatoires. A l'aide du principe du maximum d'entropie et des données existantes, des distributions probabilistes sont développées pour toutes ces variables. On se limite, cependant, au cas de l'explosion d'un réservoir cylindrique ou sphérique. – Analyse de l'impact ou analyse du mouvement : la trajectoire d'un projectile (ou fragment de structure), en fonction de ses caractéristiques de départ, est décrite par une combinaison des effets d'inertie, de gravitation et d'aérodynamique. Une approche simplifiée faisant l'hypothèse de constance des coefficients aérodynamiques permet d'identifier analytiquement la trajectoire du projectile tandis qu'une solution numérique est obtenue par une approche complète où toutes les valeurs de ces coefficients sont prises en compte.Les mouvements de translation et de rotation sont également étudiés. A l'aide de l'analyse complète et des conditions d'impact, la probabilité d'impact est déterminée. L'étude est restreinte à des projectiles en forme de fond de réservoir, fond oblong de réservoir et plaque. Les formes des cibles de l'étude sont restreintes au cas ellipsoïdal, cylindrique et cubique. – Analyse de l'état des cibles impactées : dans un premier temps, des modèles simplifiés d'impact sont utilisés afin d'étudier l'interaction mécanique entre les projectiles et les réservoirs impactés. Un modèle mécanique complet comprenant une loi de comportement élasto-plastique et un modèle de rupture est également proposé. Ce modèle est ensuite implémenté dans un code de calcul sans maillage de type SPH, i.e. Smoothed Particle Hydrodynamics. Afin d'estimer la probabilité de rupture des réservoirs impactés, les modèles simplifiés sont mis en œuvre, ce qui permet de réduire le coût de calcul. – Occurrence du sur-accident : selon l'état mécanique résiduel de la cible et son état physique (conditions thermodynamiques, niveau de remplissage, etc.), l'impact de projectiles peut conduire à la poursuite du pnénomène. Ce dernier point n'est pas traité dans le document présenté
1 :  Laboratoire de Modélisation et Simulation Multi Echelle (MSME)
Université Paris-Est Marne-la-Vallée (UPEMLV) – Université Paris-Est Créteil Val-de-Marne (UPEC) – CNRS : UMR8208
Sciences de l'ingénieur
Effet domino – Accident – Risque industriel – Probabilité – Explosion – Impact – Trajectoire – Rupture – Fragment – Réservoir
Liste des fichiers attachés à ce document : 
PDF
57_NguyenQB.pdf(2.4 MB)